(English) Patent-pending biomass treatment process provides significant advantage

Din păcate acest articol este disponibil doar în Engleză Americană. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Anellotech announced today that it has developed proprietary technology to extend catalyst lifetime in its Bio-TCat™ process for low cost conversion of biomass into valuable aromatic chemicals and renewable fuels. The new MinFree™ technology reduces mineral (ash) content of biomass feedstocks, thereby enabling economic catalyst lifetimes.

“This is a breakthrough innovation for the industry and vital to technological success” said Chuck Sorensen, Anellotech CTO. “It opens up the possibility to use many types of low-cost biomass feedstocks that contain high levels of well-known catalyst poisons. MinFree technology represents a major step forward, enabling the cost competitiveness of Anellotech’s biomass conversion process.”

“MinFree is an important development needed to advance our Bio-TCat process toward commercialization as it contributes to our ability to achieve attractive returns even in a low oil price environment, whether licensees opt for using Bio-TCat products as renewable fuels or chemicals,” stated David Sudolsky, Anellotech President and CEO. “The recent demonstration of MinFree at ton scale was a significant accomplishment.”

Anellotech has partnered with leading technology providers IFPEN/Axens for process development and Johnson Matthey for catalyst technology. “We’re fortunate to have our R&D team working side-by-side with industry-recognized experts who have long-term commitments to this program,” said Sudolsky. “Together with partners Suntory and Toyota Tsusho, our Alliance is dedicated to developing an efficient, economic, and commercially viable end-to-end process, of which biomass handling and pre-treatment are critical components.”

About Anellotech

Anellotech is developing the Bio-TCat process to produce cost-competitive renewable aromatic chemicals (benzene, toluene and xylenes, “BTX”) from non-food biomass for use in making plastics such as polyester, nylon, polycarbonate, polystyrene, or for renewable transportation fuels. Bio-TCat co-products, C9+ aromatics and carbon monoxide, can be used to make cellulosic jet and ethanol bio-fuels respectively, via 3rd party technology. The key differentiators driving Bio-TCat’s cost-competitive advantage are its MinFree™ biomass pretreatment followed by a one-reactor catalytic process. The Bio-TCat reactor outlet hydrocarbon product requires only mild hydrotreating to remove trace impurities using existing oil refining technology. Contrast this with multi-step pyrolysis processes that make a highly-oxygenated bio-oil intermediate product which requires costly high pressure hydrogenation and additional refinery upgrading. By using renewable and readily available non-food materials, such as sustainably harvested wood, corn stover and bagasse, the Bio-TCat process is less expensive compared to processes relying on sugar as a feedstock, and avoids competition with the food chain. As a result, these renewable chemicals are expected to be produced and sold profitably either against identical, petroleum-derived BTX counterparts, or as renewable fuel blend stocks. Anellotech complements its world-class R&D team with in-depth, highly-interactive, and long-term alliances with leaders in process development, catalysis, engineering design, and licensing to accelerate development and drive cost-competitiveness. IFPEN is our process development and scale-up partner, Johnson Matthey is our catalyst development partner, and Axens is our partner for industrialization, commercialization, global licensing and technical support. Industry-leading strategic partners in the BTX supply chain, including Suntory and Toyota Tsusho also have provided capital to Anellotech. For additional information, please visit: www.anellotech.com

 

Source: Anellotech